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We present a theoretical analysis of the consequence of coupling between higher photonic modes and
intersubband excitations in microcavities with embedded multiple quantum wells �MQWs�. The polariton
dispersion relations and angle-resolved absorption spectra are calculated numerically using a semiclassical
approach based on a transfer-matrix formulation and effective-medium approximation. The obtained results are
interpreted employing a multiple coupled harmonic-oscillator model supplemented by the input-output formal-
ism. We show that when the MQW occupies a large fraction of space between cavity mirrors the coupling with
higher photonic modes cannot be considered as a negligibly small perturbation in formation of the intersub-
band cavity polariton modes. When appropriate conditions are fulfilled the coupling between higher photonic
modes and so-called “dark” intersubband electronic excitations can lead, in accordance with experimental
results, to the formation of complex multiple-peaked absorption spectra.
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I. INTRODUCTION

Semiconductor microcavities �MCs� with embedded mul-
tiple quantum wells �MQWs� represent a convenient system
to study fundamental light-matter interactions modified by
the presence of a cavity as well as by two-dimensional �2D�
electron confinement. A ground Fabry-Perot mode of the MC
can be brought into resonance �by varying the external angle
of incidence �� with intersubband transitions in QWs. If their
interaction energy is greater than any homogeneous �or inho-
mogeneous� broadening of bare photon or intersubband
mode, the system is in the strong-coupling regime �SCR�,
first observed in 2003 �Refs. 1 and 2� �in agreement with
earlier semiclassical predictions3,4�. In this regime, the eigen-
states of the system are the mixed states of light and matter,
called polaritons. Their energy eigenvalues are modified sub-
stantially with respect to those in the absence of the cou-
pling. The normal-mode splitting breaks the degeneracy of
the ground photonic mode and intersubband transitions into
lower �L1� and upper �U1� polariton branches. Their behavior
is well described by a simple model of two-coupled har-
monic oscillators. The minimal splitting between the upper
and lower branches is referred to in literature as Rabi split-
ting 2�Rres

��2�Rres

�1� �. The above-mentioned polaritons ap-
pear in linear optics as quasinormal modes of the systems
and manifest themselves as two optical resonances �peaks� in
the angle-resolved absorption spectra.3–6 The angular depen-
dence of these peaks �modes� can be also modeled by the
two-oscillator model. However, the minimal separation be-

tween the modes 2�̄Rres
��2�̄Rres

�1� � is larger than the Rabi
splitting 2�Rres

.5,6 It is the consequence of the fact that even
at the resonance the above-mentioned dips are connected
with polariton modes having different in-plane wave vectors.

Since the initial work, many important developments have
followed. These include the electrical control of the Rabi
splitting7,8 and the realization of electroluminescent devices
based on intersubband cavity polaritons.9–11 The above-
mentioned achievements open the way to the development of
inversionless mid and far-infrared lasers, with lower thresh-
old with respect to quantum cascade lasers. Moreover, re-

cently published theoretical and experimental results12 also
indicate that in the case of nonadiabatic switching of the
ultrastrong light-matter coupling in semiconductor MCs
�2�Rres

comparable with the intersubband frequency �IT�
new exciting quantum electrodynamical phenomena should
occur. The giant mode splitting �2�̄Rres

comparable with �IT�
has already been observed in the mid-infrared region
���10 �m� �Refs. 5, 13, and 14� and the THz region
���100 �m�.15

In the above-mentioned new developments MCs contain-
ing a large number of the QWs are usually used. It is con-
nected with the fact that the use of a large number of QWs
helps to achieve a large value of 2�Rres

. Thus, the full un-
derstanding of the strong coupling between MCs modes and
intersubband transitions, in the case when optically active
material, i.e., MQW extends nearly over the whole length
between mirrors �bulk MCs�, is an important issue. Experi-
mental results recently published by Dupont et al.2,14 indicate
that the above-mentioned problem is far from complete un-
derstanding. The authors observed, contrary to the prediction
based on a single mode cavity approximation commonly
used in the literature, the formation of the additional strong
absorption peak between the U1 and L1 polariton branches,
on the low-energy side of the intersubband resonance. At this
point it is also appropriate to note that numerical simulations
based on the transfer-matrix formalism �TMF� predict the
formation of a small central peak even in the case of more
complex systems, namely, the quantum cascade light emit-
ters working in the SCR.9,16

The results reported by Dupont et al.2,14 are interpreted
using a simplified approach based on semiclassical linear
dispersion theory.17 Unfortunately, such an approach does
not allow for detailed clarification of the nature of the polar-
iton modes responsible for the additional central peak. It is
obvious that in order to get valuable information on the na-
ture of the additional polariton modes supported by the bulk
microcavities �BMCs� we must go beyond the above-
mentioned single mode cavity approximation. Unfortunately,
the literature on the coupling between higher photonic modes
and the electronic excitations in semiconductor MCs is
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scarce and limited to the excitonic polaritons in the Bragg
mirror based MCs. In Ref. 18 �Ref. 19� the authors discussed
the formation of the additional polaritonic modes due to the
coupling between excitons and higher cavity modes �Bragg
modes�. Some papers have also been published investigating
the polariton modes formed by pairwise interaction between
exciton and �lateral� photon modes of like spatial symmetry
in semiconductor MCs with 2D optical confinement.20 In a
recently published paper Kondo et al.21 report the observa-
tion of multiple peaks in the transmission spectra of single-
crystalline organic MC. The dispersion relations for the cav-
ity polaritons are obtained at normal incidence as a function
of thickness of the MC. The form of these relations indicates
the participation of higher photonic modes in formation of
the polariton modes responsible for the above-mentioned
multiple-peaked spectra.

In this paper we employ two approaches to the problem of
the influence of higher photonic modes on the properties of
the intersubband polaritons supported by the � /2 and � /4
BMCs with totally reflecting back mirror. �Some preliminary
results concerning the � /2 BMCs have already been
published.6� We present a semiclassical analysis based on the
TMF and the effective-medium approximation �EMA�.22 It
shows that the multiple peak features appearing in the angle-
resolved absorption spectra of the above-mentioned systems
can be successfully described employing the concept of the
constant angle intersubband radiative polaritons. To get a
better insight into the nature of the intersubband cavity po-
laritons supported by the BMCs we also present the discus-
sion based on the framework of multiple coupled harmonic-
oscillator model18,23–26 �MCHOM� supplemented by input-
output formalism.27 The advantage of this approach is that
employing the concept of the “bright” and “dark” intersub-
band states18,24,28 we can obtain simple analytical solutions
even when higher photonic modes are taken into account.
Consequently, the dependency of the position, width, and
height of peaks on different parameters can be easily visual-
ized and predicted.

The rest of this paper is organized as follows. Section II
provides the theoretical framework. The description of the
considered systems and the uncoupled modes supported by
them are outlined in Sec. III. Numerical results are presented
and discussed in Sec. IV. Section V contains concluding
remarks.

II. THEORETICAL FRAMEWORK

A. Semiclassical approach

To keep the discussion as self-contained as possible, in
this subsection �and Appendix A� we summarize the essen-
tial ingredients of the TMF �and the EMA� that we shall need
for our purpose.

1. Transfer-matrix formalism

Let us consider a typical stratified structure that consists
of a stack of 1 , . . . , j , . . . ,m plane-parallel layers �with thick-
ness dj and dielectric constant � j� sandwiched between two
semi-infinite substrate �0� and cladding �m+1� media. For

convenience we assume that all the above-mentioned media
are isotropic and homogeneous. The MQW �with NQW sym-
metric and equidistant QWs� is located between the media j
and j+1. Each period of the MQW consists of the QW �with
thickness LQW� sandwiched between half barrier layers with

thickness d̄b=db /2= �LMQW−LQW� /2, where LMQW denotes
the period of the MQW structure. In numerical simulations
we take into account the difference between the dielectric
constant of the well ��w� and barrier ��b� materials.

The monochromatic light �polarized in the x-z plane� in-
cidents from the substrate medium ��s��0� at the angle �
��0 with respect to the growth direction z. The repeated
application of the Snell’s law gives

�0
1/2 sin �0 = ¯ = � j

1/2 sin � j = ¯ = �m+1
1/2 sin �m+1, �1�

where � j is the angle of refraction of the jth medium. In the
considered geometry there is only a single component of the
magnetic field H�r , t�=eyHy�z�ei�kxx−�t� in each medium. kx
=�s

1/2� sin � /c is the in-plane component of wave vector.
The relation between amplitudes of the magnetic field in the
q and p��q+1� media may be generally written in the fol-
lowing form:22

�Hl+
�q�

Hl−
�q� � = Tq,p�Hu+

�p�

Hu−
�p� � , �2�

where H�+
�n� and H�−

�n� ��= l ,u� are the complex amplitudes of
the magnetic field corresponding to the waves traveling in
positive and negative z directions, respectively. The subscript
l �u� indicates that we take the amplitude with respect to the
plane zn−1,n �zn,n+1� separating the media n−1 and n �n and
n+1�. At this point it is worth noting that the TMF is com-
monly used for modeling wave propagation in stratified me-
dia based on MQWs �see, e.g., Ref. 29�. However, they can
take different forms depending on where the field amplitudes
or the field components form the basis set. In our approach
the TMF is based on the amplitudes of the upward and
downward propagating waves.

The total 2	2 transfer matrix of the system T�T0,m+1
can be considered as a product of matrices that describe the
effects of individual interfaces and layers of the entire struc-
ture as well the MQW �Refs. 22 and 29�

T = I0,1L1I1,2 ¯ I j,bTMQWIb,j+1 ¯ Im−1,mLmIm,m+1. �3�

The matrix L j describes the effect of propagation through the
jth layer. In the case of the homogeneous �isotropic or
uniaxial� layer it has the form

L j � L�
 j� = �exp − i
 j 0

0 exp i
 j
� , �4�

where 
 j =kz
�j�dj and kz

�j� is the normal component of the wave
vector in jth material. When this material is isotropic kz

�j�

=�� jK
2−kx

2 and �K=� /c�.
The matrix Ii,j, accounting for the interface between the

homogeneous media �layers� i and j�=i+1�, is given by
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Ii,j = I j,i
−1 = I�ri,j� �

1

ti,j
� 1 ri,j

ri,j 1
� , �5�

where ri,j�ti,j� is the Fresnel reflection �transmission� coeffi-
cient for the interface i-j �see Eqs. �8� and �9�	.

The transfer matrix through the MQW can be written in
the form

TMQW = �L�
b/2�I�rb,w�LQWI�rw,b�L�
b/2�	NQW, �6�

where L�
b /2� is the transfer matrix through the halves of
the barriers surrounding the QW. LQW is the transfer matrix
through the well layer �containing a quasi-two-dimensional
electron gas �Q2DEG�	 located between semi-infinite media
with the dielectric constant �w. Like in the previous
papers4,22,30,31 we assume for simplicity that light induced
current density j in each QW can be regarded as being local-
ized only in the well layer. In general, the QW region should
be described by a nonlocal �anisotropic� susceptibility evalu-
ated by linear-response theory. Fortunately, the problem sim-
plifies greatly when the wavelength of the radiation is much
smaller than LMQW. When the above condition is fulfilled the
EMA can be employed. In this approximation the MQW is
modeled by an effective uniform uniaxial medium with the
diagonal dielectric tensor ��
=��
��� �for details see
Appendix A�.

The total transfer matrix �Eq. �3�	 reduces now to the
form

T = I�r0,1� ¯ I�rj,j��L�
 j��I�r�j�,j+1�� ¯ I�rm,m+1� , �7�

where 
 j��
MQW=kz
�j��dj�, dj��dMQW=NQWLMQW is the

thickness of the MQW and

kz
�j�� � kz

�MQW� = ��xxK
2 − ��xx/�zz�kx

2	1/2.

The Fresnel reflection and transmission coefficients for
the interface �- can be written as

r�, = �kz
����̄ − kz

���̄��/�kz
����̄ + kz

���̄�� , �8�

t�, = 2kz
����̄/�kz

����̄ + kz
���̄�� , �9�

where �̄=� for � j� and �̄=�xx for = j�.

2. Basic equations

The overall amplitude reflection coefficient of the struc-
ture �r� is connected with the total transfer-matrix T compo-
nents by relation

r = T21/T11. �10�

As it was mentioned, in this paper we discuss the MCs with
totally reflecting back mirror. In other words, we work in the
regime of total internal reflection �TIR�.22 It implies the fol-
lowing expression for the absorptance of the structure:

A = 1 − 
r
2. �11�

The dispersion relations for the electromagnetic modes sup-
ported by the structure can be derived from the requirement

T11 = 0 �12�

equivalent to the condition that in the semi-infinite media 0
and �m+1� incoming waves do not exist, i.e., Hl+

�0�=Hu−
�m+1�

=0. Note that the solutions of Eq. �12� correspond to the
poles of the reflectivity r. The above-mentioned solutions
can be divided into radiative and nonradiative modes.32 We
will concentrate on the radiative modes since only these
modes are accessible by angle-resolved reflectance-
absorptance measurement. The frequencies of the radiative
modes are complex even in the dissipationless limit. We are
interested in the �constant angle� modes radiating energy into
the substrate medium at a fixed and real angle �. One can
show that in the case of the �th constant angle radiative mode
not only the eigenfrequency ��̃�=��+ i���� but also the wave

vector �k̃x,�=kx,�� + ikx,�� � should be treated as complex quanti-

ties satisfying the relation k̃x,� / �̃�= 
k̃x,� / �̃�
.32 Equivalently,
we may also write that

sin � = � k̃x,�

�̃�

�s
1/2

c
� = � k̃x,�

�̃�
 �s

1/2

c
� . �13�

The �th mode can be treated as a well-defined entity only
when 
��� /���
�1. Let us assume that this mode is spectrally
separated from the rest of the modes. Then, for � close to ���
the absorptance of the structure is determined mainly by the
resonant contribution from the above-mentioned mode �a
single-pole approximation�. Making appropriate expansions
one finds that this contribution takes the following Lorentz-
ian form �see Appendix B�:

A���� = A�

1

1 + �� − ����
2/��

2 �14�

with

A� = 4��
rad��

abs/��
2, �15�

where �̃�=���+ i��� ���̃ �=�� ��+ i�� ��� denotes the �th mode fre-
quency obtained including �neglecting� absorption in all
components of the structure, ���−��� and ��

rad�−�� ��. In
other words, the quantity �� ���

rad� determines the total �ra-
diative� polariton mode damping rate. For convenience we
have also defined the absorptive decay rate ��

abs=��−��
rad of

the �th mode.
From Eq. �14� we find that a well-separated mode � can

be associated with a Lorentzian shape maximum in the
angle-resolved absorptance of width 2�� centered at ���. The
height of the peak reaches the maximum �A�=1� when
��

rad=��
abs. It is worth noting that we derived the above equa-

tion without referring to a concrete structure. Thus this equa-
tion is valid for an arbitrary MQW-MC structure provided
that we work in the TIR configuration.

B. Multiple coupled harmonic-oscillator model

The MCHOM is commonly used in the literature for the
description of cavity polaritons resulting from the coupling
between ground cavity mode and excitons in QWs.18,23–26 It
has a good justification when the power transmission coeffi-

INTERSUBBAND CAVITY POLARITONS: THE ROLE OF… PHYSICAL REVIEW B 80, 245301 �2009�

245301-3



cients of the mirrors are very small. In this section we show
that the above model is also useful for the study of intersub-
band cavity polaritons even when we go beyond a single
cavity mode approximation. We assume for simplicity that
the penetration of light into the mirrors is negligibly small.
More precisely, we assume that the z component of the elec-
tric field associated with nth cavity mode �Ez

�n��z�	 has nodes
at the surfaces of the �dielectric� mirrors i.e., at z=0 and z
=LMC �see Appendix D�. �Extension on the case when back
mirror is metallic is straightforward.� We also omit differ-
ences between the dielectric constant of the barrier ��b�, the
well ��w�, and the substrate ��s� materials.

1. Coupling between electronic and photonic modes

Initially, for the purpose of calculating the MC polariton
dispersion, the coupling mirror is assumed to be perfect and
no dissipation mechanism is included.18 According to a stan-
dard MCHOM the intersubband electronic modes supported
by different QWs are treated as independent oscillators hav-
ing the frequency �IT. This frequency is assumed to be inde-
pendent on the in-plane component of the wave vector qx.
The photonic modes cn �n=1,2 ,3 , . . .� are also treated as
harmonic oscillators. The frequency of the nth photonic os-
cillator with the in-plane wave vector kx is given by
�cn

2 �kx�=kx
2c2 /�w+n2��

2 , where ��
2 =kz,1

2 c2 /�w and kz,n

=n� /LMC. For convenience in this paper we use a notation in
which the photonic mode index coincides with the number of
the antinodes of the mode.

The electronic oscillator �located at z=z� with �
=1,2 ,3 , . . . ,NQW� couples to the nth photonic mode, having
the in-plane wave vector kx=qx, with the strength

Vn��kx� = Vmax sin �nEn�z�� , �16�

where �n��n�kx�=arcsin�kx /�kx
2+kz,n

2 � and En�z�
=sin�zn� /LMC� is the cavity mode function describing the
spatial variation in Ez

�n��z�. The product Vmax sin �n denotes
the coupling strength between cn mode �the photonic oscil-
lator� and the electronic oscillator situated at the antinode of
the Ez

�n��z� field �
En
=1�. The geometrical factor sin �n origi-
nates due to the well-known polarization selection rules of
the intersubband transitions. The coupling parameter Vmax
can be taken in the following form:11

Vmax � �2�e2Ns/m��wLMC, �17�

where Ns=Ns
�1�f12 is the product of the surface electron con-

centration in the ground subband 
1� and the oscillator
strength corresponding transition from the ground 
1� to ex-
cited subband 
2� �see Appendix A�. �The result consistent
with Eq. �17� can be also extracted from the semiclassical
characteristic equation describing the intersubband polariton
modes supported by perfect-metal/QW/dielectric
��w�/perfect-metal structure.33	 We should remember that the
MCHOM takes into account only the resonant terms of the
light-matter interaction. In other words, it is based on the
rotating wave approximation �RWA�. Therefore, it correctly
describes the strong-coupling regime but it cannot describe
the peculiar features of the ultrastrong coupling limit.11

Once the matrix elements Vn� are known, a M	M cou-
pling Hamiltonian H can be constructed �see, e.g., Ref. 19�.
M =NQW+Nph, where Nph is the number of the included pho-
tonic modes. �In the systems considered here practically only
the two or three lowest photonic modes play a non-negligible
role.� The diagonalization of this Hamiltonian gives informa-
tion on the properties of the polariton modes supported by
the system.19,25 A large value of NQW ��102� substantially
complicates the simulations. Fortunately, we have checked
that the behavior of systems with a very large number of
QWs is well modeled by the simplified system �described by
the coupling Hamiltonian Happr� with a relatively small num-
ber of the QWs ��10� provided that parameters dMQW,
NQWNs as well the position of the MQW are unchanged.19

Using Happr we have been able to reproduce essential prop-
erties of the dispersion relation presented in Fig. 4. To check
the correctness of this simplification we have performed ad-
ditional simulations based the TMF and the sheet model.
Calculations are performed for the structure similar to those
studied Dupont et al. They show that the above-mentioned
reduction in the NQW very weakly affects the angle-resolved
absorption spectra provided that not only the parameters
dMQW, NQWNs but also the ratio f =LQW /LMQW or more pre-
cisely the parameters �ii �see Appendix A� are fixed. It is
interesting to note that the formation of the central polariton
mode �L2�, responsible for the appearance of the central peak
in the � /2 BMC, is predicted even by a very simplified the
four-oscillator model �M =4�. In this model the MQW is re-
placed by the two QWs �positioned at z1= 1

4LMC and z2

= 3
4LMC� and the two lowest photonic modes are included.
Below we show that a much more rigorous approach em-

ploying the concept of bright and dark intersubband
states6,18,19,23,24,26,28 can be successfully used for description
of the intersubband polariton modes in BMCs. It allows for
the derivation of simple analytical results for the polariton
mode dispersion and the angle-resolved absorption spectra.

2. Introduction of bright and dark states

Let us denote the intersubband state supported by the �th
QW by ��. �The in-plane wave vector qx will be omitted for
simplicity�. For further discussion it is convenient to intro-
duce the following bases for the intersubband states sup-
ported by the whole MQW:

D� = �
�=1

NQW

C�
�����. �18�

Physically, the D�’s represent intersubband states delocal-
ized over the NQW quantum wells according to specific co-
herent linear combinations of the original single-well inter-
subband states. For the so-called bright state ��=1� we take
C�

�1�=A1E1�z�� where A1
−2=��=1

NQWE1
2�z��. The remaining

NQW−1 dark states are characterized by NQW-component
vectors C��� ��=2¯NQW�, which can be taken orthogonal
to the vector C�1�. In other words, the following relation is
fulfilled:

�
�=1

NQW

C�
���C�

�1� = ��,1. �19�
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Employing Eqs. �16� and �18� we find that the matrix
element for excitation of the electronic state D� by the cn
photonic mode can be written as18

V̄n��kx� � V̂n� sin �n = Vmax �
�=1

NQW

C�
���En�z��sin �n. �20�

From the above relations one finds that V̂1�=A1
−1Vmax��,1.

Thus, the ground photonic mode �c1� couples only to the

bright state D1. �The equivalent expression for D1 and V̂1�
results also from the diagonalization of the coupling Hamil-
tonian in which higher photonic modes �cn�1� are not
included.25,26	 Thus, we can say that the radiative coupling
rearranges the NQW independent intersubband states into a
single, bright state which is coupled to the c1 mode and
NQW−1 dark states which do not interact with this mode. The
factor NQW

ef f =A1
−2 can be treated as the effective number of

QWs interacting with the ground cavity mode. It takes a
maximal value �NQW

ef f �NQW� when all QWs are located in
the vicinity of the antinode.

As the first one we discuss the case of the � /2 BMC
�dMQW=LMC�. Such systems usually contain a very large
number of QWs uniformly distributed between the mirrors.
Thus appropriate summations can be converted into integra-
tions. Then, we find that An

−2=NQW /2 and

C�
��� � �2/NQW�1/2E��z�� . �21�

Substituting the above relation into Eq. �20� one gets V̂n�

= V̂nn��,n where V̂nn=�p /2 and �p
2 =4�e2Ns /m��wLMQW. It

means that, in the case of the � /2 BMC, the cn photonic
mode couples only to the D�=n electronic mode. �The above
findings are also valid in the case of the � /4 BMC.� This
result is fully equivalent to that obtained modeling the MQW
by an effective medium �see Eqs. �A5� and �A6�	 and using
the round-trip quantization condition kz

�MQW�LMC=n� with
n=1,2 ,3 , . . ..6,34 �In the case of metallic mirrors15,33 n
=0,1 ,2 , . . ..�

When the MQW is centrally positioned but dMQW�LMC
�or NQW is relatively small� the selection rule �=n should be
replaced by the less restrictive “parity” selection rule 
�
−n
=0,2 ,4 , . . .. Note that in the simplest case of two QWs
��=1,2� positioned symmetrically in the MC we get D1
�DS= ��1+�2� /�2 and D2�DA= ��1−�2� /�2.23 Let us
assume that the above-mentioned QWs are positioned at z1

= 1
4LMC and z2= 3

4LMC �or equivalently that the MQW con-
tains only two QWs�. Then one can check that the matrix

elements V̂11 and V̂22 predicted by the four-oscillator model19

are close to those obtained for the � /2 BMC with NQW�1
but having the same value of the product NQWNs. It explains
why this model successfully captures the main effects in-
duced by the coupling of the two lowest photonic modes
with intersubband transitions.

In the case of the MC with an asymmetrically positioned
MQW �or when one of the mirrors is metallic, such as in the
� /4 MBC� even the above-mentioned parity selection rule is
violated. It is instructive to discuss the particular case when

the MQW occupies the region LMC /2�z�LMC �see Fig.
2�b�	. Assuming that NQW�1 we get the following approxi-
mated expression for C�

���:

C�
��� = �2/NQW�1/2E2�−1�z�� . �22�

From Eqs. �20� and �22� one finds that V̂22 / V̂11�0.5 and

V̂21 / V̂11�0.85. This result leads to the conclusion that the
formation of the complex multimode polaritons containing
the admixture of not one but two �or even more� electronic
and photonic modes is, in principle, possible. �The similar
conclusion results from the four-oscillator model in which
the MQW is replaced by the two QWs �see Fig. 3 in Ref.
19�.	 However, we should remember that in the experimen-
tally studied � /2 MCs �with dMQW�LMC� the MQW is al-
ways centrally positioned to maximize �Rres

. In such systems
the reduction in the parameter �=dMQW /LMC leads to the

dramatic decrease in the ratio V̂���1������1� / V̂11. It implies
that in the limit ��1 the effects connected with the pres-
ence of higher photonic modes can be safely neglected.

The results presented above indicate that in the case when
the MQW occupies a large fraction of space between mirrors
then not �� but rather D� states should be associated with
independent �electronic� oscillators. The main advantage of
this approach is connected with the fact that describing the
coupling of intersubband transitions with photonic modes we
can restrict �in the first approximation� to the diagonal ap-

proximation taking V̂n�� V̂nn��,n. In other words the main
properties of the cavity polaritons supported by the BMC are
captured assuming that the electronic �see Eq. �18�	 and pho-
tonic modes having the same mode index �and the same
in-plane wave vector� behavior as two-coupled harmonic os-
cillators. Below we discuss the main results predicted by this
approximation.

3. Diagonal approximation

The coupling of the Dn and cn modes leads to the forma-
tion of the upper +n�Un and lower −n�Ln polariton
branches. Their dispersion in the kx-� plane takes a well-
known form �see Appendix C�. The above branches are a
coherent mixture of the cn and Dn states whose fractions are
given by Hopfield coefficients X�n�kx� and C�n�kx� �see Ap-
pendix C�.

Using Eq. �13� we can transform the polariton dispersion
relation �predicted by the two-oscillator model� from the
kx-� plane to the �-� plane. Taking into account the dissi-
pation we get �see Appendix C�

�̃�n��� =
�̃IT + �̃cn

���

2
�

1

2
��̄n

2��� + 4��̄R
�n�	2, �23�

where �̃IT=�IT− i�IT, �̃cn
���=�cn

���− i�cn
���, �cn

���
=n�� /cos���, �̄n���=�cn

���−�IT, and �̄R
�n����= V̂nn tan �.

The quantity �cn
��IT� is the decay rate of the cn cavity mode

�intersubband transitions�. The resonant mode splitting pre-

dicted by Eq. �23� can be written �in the SCR� as 2�̄Rres

�n�

=2�̄R
�n���n

res�, where �n
res is defined by relation �cn

��n
res�

=�IT. As it was mentioned �̄Rres

�n� does not coincides with
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Rabi splitting �Rres

�n� . In the systems considered here differ-
ence between �b, �s, and �w is small. It implies that the
difference between �n

res and �n
res is also small. Neglecting this

difference we get the following useful relation: �n

��̄Rres

�n� /�Rres

�n� =1 /cos �n
res. Taking, like in the system studied

by Dupont et al.,2,14 �1
res�73° we get �1�3.4. Thus �̄Rres

�1� is
usually several times larger than �Rres

�1� . It is a consequence of
the fact that the external radiation propagating at the angle
�1

res couples resonantly to the polariton branches with the
wave vectors which substantially differ from k1

res defined by
relation �c1

�k1
res�=�IT. This implies that although the angular

dependence of the U1 and L1 branches �predicted by Eq.
�23�	 takes the same form as that resulting from the two-
coupled oscillator model, the polariton states associated with
upper and lower peaks observed in angle-resolved spectra of
the resonant MC do not contain the same fraction of the
electronic and photonic components. We will return to this
problem in Sec. IV.

In the diagonal approximation the expression for the ab-
sorption spectrum can be generally written as A���
=�nAn���, where An��� the absorption connected with the
branches +n and −n. The application of the input-output for-
malism makes it possible to calculate An��� �see Appendix
C�. The expression for An���, at fixed �, can be approxi-
mated by

An��� =
4�cn

rad���̄R
�n�	2�IT + �cn

abs��� − �IT�2 + �IT
2 	�


��̃cn
��� − �	��̃IT − �� − ��̄R

�n����	2
2
.

�24�

where �cn

rad=�cn

abs+�cn

rad, �cn

rad��cn

abs� is radiative �absorptive�
cavity mode decay.

In Appendix D we show that, in the case of the � /2 BMC,
the equivalent formula can be obtained employing a standard
multibeam interference analysis �and the RWA�. This analy-
sis also indicates that incorporating the mirror losses into
�cn

abs has a justification. In other words we can assume that
the decay rate �cn

rad ��cn

abs�, appearing in the above formula
obeys the relation given by Eq. �D5� �Eq. �D6�	.

At � close to ��n� , the resonant contribution connected
with the branch �n reduces �in the SCR� to the same form as
that predicted by the semiclassical approach �see Eq. �14�	. It
can be written as

A�n��� � A�n
1

1 + �� − ��n� ���	2/��n
2 �25�

with

A�n = 4��n
rad��n

abs/��n
2 , �26�

where ��n=��n
rad+��n

abs, ��n
rad=C�n

2 �cn
, and ��n

abs=X�n
2 �IT

+C�n
2 �cn

abs. C�n and X�n are modified Hopfield coefficients
�see Appendix C�.

From Eq. �26� we find that in the resonant case
��=�1

res� the expression for the height of the peaks, associ-
ated with L1 and U1 branches reduces to the form

A+1 = A−1 =
4�c1

�rad��c1

�abs + �IT�

��c1

�rad + �c1

�abs + �IT�2 , �27�

where �c1

�rad=�c1

rad��1
res� and �c1

�abs=�c1

rad��1
res�.

The depth of the absorptance splitting at its lowest point,
i.e., at �=�IT is given by

A�1
min =

4�c1

�rad�IT��̄Rres

2 + �c1

�abs�IT	

��IT�c1

� + �̄Rres

2 �2
�

4�c1

�rad�IT

�̄Rres

2
. �28�

Moreover, when � is close to �1
res and

�2�̄R
�n���1

res� / �̄n��1
res�	2�1 then the following useful relations

�devoted to the Ln�1 branches� result from Eqs. �23�, �25�,
and �26�:

�Ln
� = �IT�1 −

1

n − 1
� �̄R

�n���1
res�

�IT
�2� �29�

and

ALn
=

4

�n − 1�2� �̄R
�n���1

res�
�IT

�2�c1

�rad

�IT
. �30�

In obtaining Eq. �30� we have assumed that �IT��cn

rad

��cn

abs.

III. DESCRIPTION OF SAMPLES AND UNCOUPLED
PHOTONIC MODES

The numerical calculations reported in this paper are per-
formed for the three systems �see Fig. 1�. The first one is the
� /2 BMC presented in Fig. 1�a�. To facilitate the comparison
with results presented in the literature we assume that this
structure is similar to those studied experimentally by Du-
pont et al.2 and theoretically in our previous paper.6 It is
grown on a GaAs semi-insulating substrate ��GaAs� and con-
sists of a 140-repeat �NQW=140� MQW embedded between a
0.4-�m-thick n+ GaAs top layer �back mirror� and
0.8-�m-thick n+ GaAs bottom layer �coupling mirror� with
the doping concentration ND=2	1018 cm−3. The cladding
medium is Au. The period of the MQW consists of a 60-Å
GaAs QW and a 290-Å Al0.21Ga0.79As barrier. The QW is
treated as a two-subband system with: ��IT=114 meV, Ns
=2	1011 cm−2, and ��IT=3.1 meV. The above parameters
are relevant to the system studied by Dupont et al.14 �The
numerical simulations reported in our previous paper6 have
been performed for the parameters Ns=2	1010 cm−2 and
��IT=1.1 meV relevant to the system studied in Ref. 2.� To
get additional information on the role of the higher photonic
modes in the formation of the intersubband cavity polaritons
we also discuss a system which differs from the above-
mentioned one only by �i� the smaller value of the
Al0.21Ga0.79As barrier thickness �not 290 Å but 115 Å� and
�ii� the presence �between the MQW and the coupling mir-
ror� of the additional Al0.21Ga0.79As spacing layer with thick-
ness dspac=LMC /2 �see Fig. 1�b�	. We call it the � /2 “half”
BMC.

The giant mode splitting was also observed in the � /4
BMC where the confinement of the radiation is realized by
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sandwiching the optically active material between a bottom
dielectric mirror and a top metallic mirror.5,9 For this reason
we have also performed appropriate simulations for a � /4
BMC �see Fig. 1�c�	. It differs from the previously described
� /2 BMC �see Fig. 1�a�	 by �i� the reduction in the NQW
from 140 to 70 and �ii� replacement of the upper dielectric-
metallic mirror by the purely metallic �Au� mirror.

Now we briefly discuss the main properties of the un-
coupled photonic modes in the systems shown schematically
in Fig. 1. The photonic modes supported by the � /2 BMC
and the half � /2 BMC can modeled, in the first approxima-
tion, by the Fabry-Perot MC with nearly perfect dielectric
mirrors. It implies that the photonic modes in these systems
can be divided into even �n=1,3 , . . .� and odd �n=2,4 , . . .�
parity in Ez �with respect to the center of the cavity� photonic
modes �see Fig. 1 in Ref. 14�. In the case of the � /4 BMC
�see Fig. 1�c�	 the simplified model with the metallic back
mirror and the dielectric coupling mirror can be used. Em-
ploying this fact, one finds that the photonic modes sup-
ported by the above-mentioned system practically coincide
with even-parity photonic modes supported by the � /2
BMC. Due to that, the photonic modes in the � /4 BMC will
be denoted by the mode index n=1,3 ,5 , . . . instead of n
=1,2 ,3 , . . ..

Figure 2�a� presents the � dependence of the four lowest
photonic modes cn �n=1,2 ,3 ,4� supported by the � /2
BMC obtained with the help of the TMF. We find that the
resonant angle �1

res ��2
res�, at which �c1

����Re�̃c1
���

��c2
����Re�̃c2

���	 coincides with �IT, is close to 73.40°
�61.87°�. These values are in good agreement with those re-
ported by Dupont et al.2,14 In the case of resonant structure
��=�1

res� the separation between each two adjacent photonic
modes is close to �IT. This fact is probably the main reason
why a single mode cavity approximation is commonly used
�even in the papers employing a full quantum-mechanical
treatment5,11,12,35�.

It is worth noting that the behavior of the photonic modes
in the considered systems is only semiquantatively described
by the simplified model �with nearly perfect dielectric mir-
rors�. For example, this model predicts that �cn

���
=n�c1

��� and �cn
���� cos−1���. From Fig. 2 one finds that

the adjacent mode separation �̄�n+1�n���=�cn+1
���−�cn

���
does not coincide with �c1

���. In the most interesting case,
�=�1

res, the separation between the two lowest modes takes
the value close to 0.9 �IT. It is also easy to see �particularly

in the case of the lowest mode� that the � dependence of the
mode frequency is not well approximated by cos−1���. The
above-mentioned deviation is mainly due to the fact that the
penetrations of the cavity modes into the mirrors �the phase
change at the reflection� strongly depends on � �and ��. The
numerical simulations �not presented here� fully support the
above suggestion.

As one can expect the cavity mode relaxation rate con-
tains the radiative and absorptive contributions �cn

=�cn

rad

+�cn

abs. The latter contribution is connected mainly with the
absorptive losses in the mirrors. In the systems considered
here it plays a nonnegligible role �i.e., �cn

abs is comparable
with �cn

rad� only in the case of the ground mode. For example,
from Fig. 1b in Ref. 6 we find that in the case of the resonant
� /2 BMC �c1

�6.5 meV and �c1

rad�3.8 meV. This figure
also shows that, in contrast to the simplified model, the ratio
�cn

rad /�c1
increases with increasing n and �. It is obvious that

this fact can be also associated with the dispersivity of the
mirrors. The quality factors Qn�=�cn

/2�cn
� are rather small.

Due to the above-mentioned facts, they decrease very fast
with the increase in the mode index and �. For example, in
the case of the resonant � /2 BMC �and the � /2 half BMC�
the TMF gives Q1�10, Q2�5, and Q3�3. It is worth not-
ing that, in qualitative agreement with Eq. �D4�, the numeri-
cal values of the quality factors in the � /4 BMC �with back
metallic mirror� are about two times smaller than in the � /2
BMC.

As it was mentioned in Sec. II the knowledge of the be-
havior of the photonic modes in the kx-� plane is required
for the correct description of the coupling between the pho-
tonic and intersubband transitions. For this reason in Fig.
2�b� we additionally present the dispersion curves of the cav-
ity modes extracted from Fig. 2�a� employing fact that when

���
���� then Eq. �13� can be simplified to the form

sin �� kxc/�����s. �31�

We find that the resonant wave vector k1
res �k2

res� at which
�c1

�kx� ��c2
�kx�	 coincides with �IT, is close to 0.96 kIT �0.88

kIT� where kIT=�GaAs
1/2 �IT /c. It can be easily observed that �at

large �� the mode separation in the kx-� plane, � jn�kx�
=�cj

�kx�−�cn
�kx�, is much smaller than in the �-� plane.

From Fig. 2�a� we find that �21
� ��21�k1

res� takes the value of
�0.07�IT. Note that due to the penetration of the cavity
modes into the mirrors this value is noticeably smaller than
that predicted by the model with nearly perfect mirrors. For

FIG. 2. The real part of the frequencies of the four lowest pho-
tonic modes supported by the � /2 BMC described in the text as a
function of �a� � and �b� kx. kIT=�GaAs

1/2 �IT /c.
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FIG. 1. �Color online� Diagrams illustrating schematically the
geometry of the three structures discussed in the paper: �a� the � /2
BMC, �b� the � /2 half BMC, and �c� the � /4 BMC.
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example, when �1
res�60° the above model leads to the fol-

lowing relation: �21
� /�IT�1.5 cos2��1

res�. Taking �1
res=73.4°

we get �21
� /�IT�0.12. The above estimations �see also Fig.

4� indicate that in the system studied by Dupont et al.14

�R
�2��k1

res� is comparable with �21
� . It leads to the conclusion

that the formation of the L2 branch should be taken into
account in the correct interpretation of the angle-resolved
absorption spectra �at ���1

res�. Numerical simulations pre-
sented in the next section fully support the above suggestion.

IV. NUMERICAL RESULTS AND DISCUSSION

Figure 3 displays the � dependence of the polariton
modes obtained solving numerically the dispersion Eq. �12�
�see also Eq. �13�	 for the systems schematically shown in
Fig. 1. Figure 4 displays the kx dependence of the polariton
modes extracted from Fig. 3 with the help of Eq. �31�. Only
a few upper and lower branches �n 3�, which are mainly
responsible for the features observed in the angle-resolved
absorption spectra, are presented.

The inspection of the presented results shows that the be-
havior of the polariton modes in all of the considered sys-
tems is qualitatively similar. It is interesting that the kx and �
dependence of the upper �Un� and lower �Ln� branches can
be qualitatively modeled by the two strongly coupled oscil-
lators not only for n=1 �like in the system studied in our
previous paper6� but also for n=2. It is due to large electron
concentrations and consequently large Rabi splitting in the
systems considered here. Note, however, that now the two-
oscillator model does not work so well as in Ref. 6. For
example, the relation �U1

� ��1
res�+�L1

� ��1
res�=2�IT resulting

from the two-oscillator model is fulfilled only with the accu-
racy of �10%. Additionally, the heights of the two main
peaks are different. It is also easy to see that the anticrossing

of the curves �U1
� and �L1

� , at � close to �1
res, is not accom-

panied by the crossing of the curves �U1
� and �L1

� . These
effects can be connected with a strong dispersivity of the
cavity mirrors which results mainly from the dispersivity of
the dielectric constant of the n+ GaAs layers. Note that in the
MCHOM the � dependence of the amplitude reflection co-
efficients of the mirrors is not considered. Simulations show
that this dependence very strongly affects the behavior of the
lowest polariton branches �and the angle-resolved absorption
spectra� in the systems studied by Dupont et al.14 and Sapi-
enza et al.9 A detailed discussion of the above-mentioned
problem will be presented in a separate paper.

Some small qualitative difference in the behavior of the
U1 branches in the � /2 BMC and � /2 half BMC is observed
at ���2

res. It seems that this difference can be associated
with the presence �due to the lower symmetry of the � /2 half
BMC� of the nondiagonal coupling between c2 and D1
modes. As it has been mentioned, this coupling enables the
formation of the multimode polariton states with the disper-
sion deviating from that obtained in the diagonal limit.

The results presented in Figs. 3 and 4 support the fact
predicted by the two-oscillator model that in the systems
with �1

res�70° the Rabi frequency ��Rres
� is about three

times smaller than the mode splitting in the �-� plane

��̄Rres
�. As it was mentioned, it is a consequence of the fact

that polariton modes associated with the two main peaks

correspond to the different values of kx= k̄�1
res . They are de-

fined by relations ��1� �k̄�1
res�=��1� ��1

res�. Thus we can see that
in spite of the fact that the behavior of the L1 and U1
branches on the �-� plane is well modeled by the two-
oscillator model, the above branches do not contain the same
fraction of the electronic and photonic components at the
anticrossing point, i.e., when � is very close to �1

res. Equiva-
lently, we can say that the fraction of the electronic �photo-
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FIG. 3. The real part �upper panels� and imaginary part �lower panels� of the frequencies of the modes ci, Ui, and Li �with i 3� supported
by ��a� and �b�	 the � /2 BMC, ��c� and �d�	 the � /2 half BMC, and ��e� and �f�	 the � /4 BMC as a function of �. The solid �dotted� curves
correspond to the polaritonic �photonic� modes.
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nic� component is not quantified correctly by the modified
Hopfield coefficient X�1 �C�1�. When �1

res is sufficiently

large the expression for the parameters �1�k̄�1
res�, controlling

the composition of the above-mentioned polariton branches

�at kx= k̄�
res�, can be approximated by �see Appendix C�,

�1�k̄�1
res� �

2�̄Rres
�Rres

�̄Rres

2 −�Rres

2
=

2 cos��1
res�

sin2��1
res�

. �32�

Taking �1
res=73.4° we get �in agreement with the numerical

results displayed in Figs. 3 and 4� that �1�k̄�1
res��0.62. It

implies that X�1
2 �k̄�1

res��0.072. Thus the polaritonic modes
responsible for the two main peaks in considered here struc-
tures have practically photonic character. It is remarkable
that, in the limit considered here, the numerical value of

�1�k̄�1
res� �and consequently the composition of the branches�

is controlled mainly by �1
res. More precisely, the admixture of

the electronic component decreases with increasing �1
res.

In a similar way one can check that the L2 branch, respon-
sible for the central peak, has mainly electronic character
XL2

2 �k1
res��CL2

2 �k1
res� at ���1

res. The admixture of the photo-
nic component c2 increases very fast with the increasing ratio
�R

�2� /�IT.

Figure 5 illustrates the fact that all three peaks, predicted
by the TMF, are well reproduced by resonant contributions
of the lowest order polariton branches �see Eq. �14�	. It is
also interesting to note that the approximated expressions
obtained in the framework of the two-oscillator model �see
Eqs. �26�–�30�	 reproduce the main features of the angle-
resolved absorption spectra very well. For example, a small
asymmetry of the central peak of the � /2 BMC observed by
Dupont et al.14 can be probably associated with the fact that
the central peak is assigned not to one but at least two central
polariton branches, L2 and L3. From Eq. �29� �see also Fig. 3	
one finds that �L2

� is slightly smaller than �L3
� . Moreover, Eq.

�30�, in a qualitative agreement with the single-pole approxi-
mation �see Eq. �15�, predicts a dominant contribution of the
branche L2 to the central peak	. Unfortunately, the smallness
of the splitting makes it impossible to resolve states L2 and
L3 in the absorption spectrum. We have checked numerically,
using the TMF, that in accordance with simplified Eq. �30�
the visibility of the central peak increases with the increase
in the Rabi splitting �more precisely Ns� and the decrease in
the relaxation rate �IT. This finding is in agreement with the
experimental results reported by Dupont et al.2,14

Although in all three samples the splitting between the
two main peaks is nearly the same, a substantial reduction in
the central peak height is observed in the � /2 half BMC as
well as in the � /4 BMC. In the latter case the reduction is
associated with the previously mentioned fact that the � /4
BMC does not support photonic modes corresponding to the
c2 mode of the � /2 BMC. Consequently, the formation of a
central peak in the above-mentioned structure is connected
with the coupling of c3 and D3 modes. Due to that the fre-
quency mismatch is larger �and consequently, the coupling
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is defined by relation kx=�GaAs
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The vertical arrows are positioned at kx= k̄�1
res such that �L1
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� ��1
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� �k̄+1
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� ��1

res�. The solid �dotted� curves cor-
respond to the polaritonic �photonic� modes.
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FIG. 5. The spectral dependence of the absorptance of �a� the
� /2 BMC, �b� the � /2 half BMC, and �c� the � /4 BMC at �
=�1

res. The solid �dotted� curves are obtained employing Eq. �11�
�Eq. �14�	.

INTERSUBBAND CAVITY POLARITONS: THE ROLE OF… PHYSICAL REVIEW B 80, 245301 �2009�

245301-9



efficiency is smaller� than in the case of the c2 and D2
modes.

The reduction in the central peak height in the case of the
� /2 half BMC results from the reduction in the overlap be-
tween the c2 and D2 modes. This overlap is controlled by

factor V̂22. Estimations based on Eqs. �20�, �22�, and �30�
indicate that in the � /2 half BMC the above-mentioned fac-
tor and consequently the height of the central peak is about
two times smaller than in the � /2 BMC.

We should remember that the theoretical results obtained
in this paper are based on a number of approximations, most
notably the omission of the statistic disorder in the systems
or more precisely, the inhomogeneous broadening of the in-
tersubband transitions. Unfortunately, finding polariton states
in disordered planar microcavities is a difficult task, which
we are not attempting in this paper. In the systems studied by
Dupont et al.2,14 the disorder is expected to play a perturba-
tive role. However, in the case of the electroluminescent de-
vices based on the intersubband cavity polaritons the situa-
tion is more complex. It is connected with the fact that in the
above-mentioned systems the optically active materials �the
quantum cascade structures� are much more strongly disor-
dered than typical MQW systems. Stimulated by the above-
mentioned fact we will qualitatively discuss the role of the
disorder on the formation of the central intersubband polar-
iton modes and their manifestations in the angle-resolved
absorption spectra of MQW-MC systems. For very rough
estimation we can assume �like in the case of the excitonic
polaritons35� that the disorder leads only to the inhomoge-
neous distribution of the intersubband frequencies, i.e., the
frequencies of the electronic oscillators are not the same. In
this case a standard MCHOM �Refs. 23–26 and 35� predicts
the formation of additional centrally positioned polariton
modes �and consequently the inhomogeneously broadened
central peak� even in the single cavity mode approximation.
Employing, like in Refs. 23 and 24, the three-oscillator
model �the two QWs and the ground photonic mode� one
finds that the admixture of the photonic component in the
central polariton mode is controlled by the ratio Rinh
= �inhomogeneous broadening� / �Rabi splitting�. The above
results are consistent with those predicted by a more rigorous
microscopic approach28 in which the disorder induced cou-
pling between the bright and dark excitonic states and the
strong light-matter coupling are treated on equal footing. At
this point it is interesting to note that �when � is close to �1

res

and the ratio Rinh is small� the width of two main peaks �but
not the central one� is practically controlled by homogeneous
broadening.26 We suppose that the mechanism connected
with inhomogeneous broadening may play a important role
in the formation of small central peak structure observed
recently in � /4 MC with embedded quantum cascade
structure.36 It is connected with the fact that due to larger
cavity mode separation, in the above-mentioned systems, the
presence of the higher cavity modes plays a less important
role than in the � /2 systems �see Fig. 5�.

Up to now we have discussed the influence of the central
polariton mode formation on the angle-resolved absorption
spectra. However, recent electroluminescence experiments in
MC-quantum cascade devices show that it is possible to ob-

tain intersubband cavity polariton emission after resonant
electrical excitation. The quantum theory of electron tunnel-
ing into intersubband polariton states developed by De Lib-
erato and Ciuti11 indicates that quantum efficiency of the
electroluminescence takes largest values when electrons are
injected into polariton states having large admixture of the
photonic component. Thus one can expect that the formation
of the central polariton modes, with small admixture of the
photonic component, can also lead to the appearance of an
additional small central peak in the electroluminescence
spectra. This suggestion is consistent with recent experimen-
tal findings.36 Moreover, it is reasonable to expect that due to
the electronic character of the central polariton modes they
may play a nonperturbative role in the electron transport.11

We would like also to stress that, the mixing between the
bright and dark intersubband states induced by the disorder
or/and coupling with higher photonic modes �more exactly
the formation of the multimode branches�, may affect sub-
stantially all polariton relaxation processes.19,24,28

V. CONCLUDING REMARKS

We have discussed, employing the semiclassical approach
and the MCHOM �supplemented by the input-output formal-
ism�, the formation and properties of intersubband cavity po-
lariton modes. Special attention has been paid to the role of
the higher photonic modes. We have shown, introducing the
concept of the bright and dark intersubband states, that
higher order photonic modes play an important role when �i�
the MQW occupies a large fraction of the space between the
cavity mirrors and �ii� the Rabi frequency �Rres

is compa-
rable or larger than the MC mode separation in the kx-�
plane. The coupling of the above-mentioned modes with the
dark states leads then to the formation of higher photonic
modes manifested as a strong central peak in the angle-
resolved reflection-absorption spectra. Moreover, when the
appropriate conditions are fulfilled the formation of complex
multimode polariton branches is also possible.
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APPENDIX A: EFFECTIVE MEDIUM APPROXIMATION

The calculation of LQW �and consequently TMQW� re-
quires, in general, the solution of the Maxwell equations us-
ing a nonlocal susceptibility of the QW evaluated by linear-
response theory, which incorporates the microscopic details
of the electron wave functions of the initial and final
states.3,4,31 Fortunately, for the realistic value of the QW pa-
rameters it is reasonable to assume that the optical response
connected with intersubband transitions is not sensitive to
the actual distribution of the normal current density jz�z ,��
induced �in the QW region� by the normal component of the
external electric field Ez

ext but rather depends only on the total
surface current jz

2D���=�−LQW/2
LQW/2 dzjz�z ,��. �We assume that

the z dependence of Ez
ext in the region occupied by the QW
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z
�LQW /2 is negligibly small.� In the above-mentioned ap-
proximation the electrons in the QW behave as a 2D sheet
�located in the middle of the QW, i.e., at z=0� characterized
by the modified surface conductivity defined by relation
!̃zz

2D���= jz
2D��� /Ez

ext�z=0�. Note that this conductivity de-
scribes the �nonretarded� collective intersubband response of
the electrons to the uniform external electric field Eext�t�
=ezEz

exte−i�t not to the total electric field E.22,37

In the case of the two parabolic subbands �lower subband

1� and upper subband 
2�� the expression for !̃zz

2D���, result-
ing from the local-density approximation �LDA�, takes �in
the long-wavelength limit� the form37

!̃zz
2D��� =

�Nse
2f21

m�

− i�

�̃21
2 − �2 − i2��IT

, �A1�

where �̃21��IT is the intersubband transition frequency.
Due to the depolarization and excitonlike effects this fre-
quency is slightly larger than the intersubband spacing �21.
�Equivalently, we can say that �IT corresponds to the fre-
quency of the intersubband plasmon, i.e., the collective in-
tersubband oscillation due to the Coulomb interaction be-
tween electrons.� f12=2m��21z21

2 /� is the oscillator strength
connected with the intersubband transitions �f12�1�, �IT is
the phenomenological dephasing rate connected with inter-
subband transitions, �Ns=Ns

�1�−Ns
�2�, Ns

�"� is the surface elec-
tron concentration in "th subband and finally, e and m� are
the charge and effective mass of the electron, respectively. In
further discussion we restrict ourselves to the case when only
ground subband is occupied ��Ns=Ns

�1�� and neglect the in-
trasubband transitions. Note that in the systems with non-
equilibrium inverse population �Ns is negative. �The proper-
ties of the eigenmodes of an idealized MC ��IT=�cn

=0� with
�Ns�0 have been discussed by Pereira34 �see also Ref. 38�	.

The QW transfer matrix predicted by the sheet model
takes the following form:

LQW = L�
w/2�I2DL�
w/2� , �A2�

where matrix I2D can be written in the terms of the reflection
coefficient r2D�=�#QW /2� / �1+#QW /2�	 and the transmission
coefficient t2D�=1 / �1+#QW /2�	 of the sheet as22

I2D =
1

t2D� 1 − r2D

r2D �t2D�2 − �r2D�2� , �A3�

where

#QW = �4�/c��w�!̃zz
2D���tan��w�sin��w� �A4�

with �w=arcsin���s /�w�1/2 sin �	.
It is reasonable to expect that the above-mentioned sheet

model should work well even when we go, like in Refs. 30
and 34, beyond the LDA and/or parabolic approximation.
Another advantage of the sheet model is the possibility of the
inclusion of the saturation of the intersubband transitions
employing an approach described in our previous paper.39

This problem will be the subject of our future papers.
Once the elements of the matrix I2D are known the trans-

fer matrix through the MQW can be calculated numerically.
Nevertheless for our purpose it is much more convenient to
choose a simplified approach developed in Ref. 22. It is

based on the assumption that when the period of the MQW is
much smaller than the wavelength of the optical field. �This
simplifying assumption is reasonable in the case of the low-
est order cavity modes.� Then we can model the MQW by an
effective uniform uniaxial medium �slab�. Standard boundary
conditions require Ex �Ez� and Dz �Dx� to be continuous
�discontinuous� at the interfaces. �D=��z�E�z ,��
+ �i4� /��j�z ,�� and ��z� is the background dielectric con-
stant at point z	. Thus Ez and Dx must be suitably averaged
over the period of the MQW to obtain its dielectric response
when it is viewed as an effective medium. Performing appro-
priate manipulations we get the following general expres-
sions for the components of the diagonal effective dielectric
tensor ���� �for details see Refs. 22 and 31�:

������ � �Dx�/Ex = �xx � = x,y , �A5�

�zz
−1��� � �Ez�/Dz = �zz

−1 − ��zz���/�w
2 , �A6�

where � � denotes the spatial averaging over the MQW pe-
riod, ��zz���= i4�!̃zz

2D��� /�LMQW, �xx= �1− f��b+ f�w, and
�zz

−1= �1− f� /�b+ f /�w, f =LQW /LMQW. We assume for sim-
plicity that the QWs have rectangular shapes.

APPENDIX B: RESONANT CONTRIBUTION FROM
POLARITON MODE

Discussing the relationship between reflectivity �absorp-
tivity� minima �maxima� and the eigenfrequences of the
eigenmodes in the TIR geometry it is convenient to rewrite
Eq. �10� into the form

r = �1 − u�/�1 + u� = �2 − L�/L �B1�

with L=1+u and

u =
1 − r01

1 + r01

T11 − T21

T11 + T21
, �B2�

where Tij ��T1,m+1	ij. The matrix T1,m+1 is defined by rela-
tion T=I0,1T1,m+1. �We assume that T11+T21�0.�

Substituting Eq. �B1� into Eq. �11� we get

A = u�/
1 + u
2 = 4�L� − 1�/
L
2. �B3�

It is obvious that the above expression has a physical mean-
ing only for the real frequency �.

The virtual mode Eq. �12� can be rewritten as

L = 1 + u = 0. �B4�

Since we consider the radiative modes, the quantities L and
u appearing in the above equation should be treated as func-
tions of the complex frequency �̃=��+ i�� even in the ab-
sence of the losses. The losses can be included assuming that
L and u are also functions of the phenomenological damping
parameters �̄= ��̄1 , �̄2 , �̄3 , . . . , �̄q�. These parameters describe
the dissipation in all absorptive media of the considered
structure. If �̃ is near the frequency of a well-separated vir-
tual mode �, then u can be approximated by the linear
expansion32 �the single-pole approximation�
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u��̃,�̄� = a� + b��̃ + �
�=1

q

c�,��̄�, �B5�

where the coefficients a�, b�, and c�,� are, in general, com-
plex quantities.

Let us assume for a moment that the dissipation is absent,
i.e., c�,�=0. This implies the vanishing of the absorptance A.
Consequently, we can take u���̃=� , �̄=0�=0. Thus, param-
eters a� and b� can be treated as imaginary quantities. Taking

this fact into account and remembering that ��̃ � denotes the
�complex� mode frequency in the absence of dissipation, we
get

a� = − i�� ��/�� ��, b� = − i/�� ��. �B6�

Employing Eqs. �B4�–�B6� we find, after some manipula-
tions, that in the single-pole approximation the expression
for the complex function L��̃=� , �̄� reduces to the form

L���̃ = �,�̄� = ���/�� �� + i�� − ����/�� �� = �i/�� ����� − �̃�� .

�B7�

Substituting the above relation it into Eq. �B3� we get Eq.
�14�.

APPENDIX C: TWO-OSCILLATOR MODEL

1. Dispersion relations and Hopfield coefficients

Let us assume that the behavior of the photonic mode cn
and the electronic mode Dn is well modeled by the two os-
cillators of frequencies �cn

�kx� and �IT coupled by an energy

�R
�n���n�� V̂nn sin �n. The coupling Hamiltonian is now a 2
	2 matrix and the polariton dispersion relations are the so-
lutions of the following matrix determinant:

Mn�kx,�� � ��IT − ����cn
�kx� − �	 − ��R

�n���n�	2 = 0.

�C1�

These solutions have a well-known form

��n�kx� =
�IT + �cn

�kx�

2
�

1

2
��n

2�kx� + 4��R
�n���n�	2,

�C2�

where �n�kx�=�cn
�kx�−�IT. From the above equation we find

that the coupling between the electronic and photonic modes
leads to the anticrossing of the upper �+n�Un� and lower
�−n�Ln� polariton branches. Rabi splitting frequency, i.e.,
the minimal separation between the above-mentioned
branches, is given by 2�Rres

�n� =2�R
�n���n

res�, where �n
res

��n�kn
res� and kn

res is determined by relation �cn
�kn

res�=�IT.
The �nth branch is a coherent mixture of the cn and Dn

states whose fractions are given by Hopfield coefficients
X�n�kx� and C�n�kx�. The electronic �photonic� weight is
quantified by X�n

2 �C�n
2 �. The expressions for these weights

can be written as27,40

X�n
2 �kx� =

$�n�kx� + ��n
2�kx� + 4��R

�n���n�	2

2��n
2�kx� + 4��R

�n���n�	2
, �C3�

C�n
2 �kx� = 1 − X�n

2 �kx� . �C4�

At kx=kn
res the polaritons are half electronic and half photo-

nic, that is, X�n
2 =C�n

2 =1 /2. When kx�kn
res it is convenient to

write X�n
2 �kx� in terms of the dimensionless parameter

�n�kx�=2�R
�n���n� /�n�kx� as

X�n
2 �kx� =

$1 + �1 + �n
2�kx�

2�1 + �n
2�kx�

. �C5�

One can check that when �n
2�kx��1 the following approxi-

mation is valid: X+n
2 �kx��C−n

2 �kx���n
2�kx� /4= ��R

�n���n�	2

/�n
2�kx�. Thus in the limit of large vectors ��n�kx�→0� the

upper branch becomes photonic, that is, X+n
2 �0 and C+n

2

�1, and the lower branch becomes electronic, that is, X−n
2

�1 and C−n
2 �0.

Employing Eq. �13� we can eliminate kx from Eq. �C1�.
Assuming for simplicity that the coupling strength between
cn and Dn modes is not too large �or more precisely, assum-
ing that �Rres

�n� /cos �n
res��IT and � is close to �n

res� we obtain
the following expression for the polariton mode dispersion in
the �-� plane:

��n��� =
�IT + �cn

���

2
�

1

2
��̄n

2��� + 4��̄R
�n����	2,

�C6�

where �cn
���=n�� /cos���=n�c1

���, �̄n���=�cn
���−�IT,

and �̄R
�n����= V̂nn tan �.

As it has been mentioned �see also Fig. 4� polariton ener-
gies �−1��� and �+1��� corresponding to the same angle �
=�1

res correspond to the different values of kx given by

k̄�1
res = ��1��1

res�sin��1
res��s

1/2/c .

Equivalently we can also use the following relation:

�IT� �̄Rres
= ��1�k̄�1

res� . �C7�

To simplify further discussion we employ the fact that
when kz,1

2 � �k1
res�2 and �Rres

��IT, like in the systems con-

sidered here, then, to a good approximation, �1�k̄�1
res� can be

replaced by �1�k1
res�. Moreover, we can neglect the difference

between 
�1�k̄+1
res�
 and 
�1�k̄−1

res�
 taking 
�1�k̄+1
res�
= 
�1�k̄−1

res�

��1

res. Thus the parameter �1�k̄�1
res�, appearing in the expres-

sion for the Hopfied coefficients �Eq. �C5�	, can be approxi-

mated as �1�k̄�1
res��2�Rres

/�1
res. Using these simplifications

and Eq. �C7� we get useful relation given by Eq. �32�.
We should remember that in a real cavity, the electronic

and photonic modes are coupled to a continuum of modes. It
leads to the dissipation. This can be accounted for by intro-
ducing, in the coupling Hamiltonian �or equivalently in the
matrix determinant Eq. �C1�	, complex frequencies �̃IT
=�IT− i�IT and �̃cn

�kx�=�cn
�kx�− i�̂cn

�kx�, where �̂cn
�kx� is

the decay rate of the cn cavity mode. The matrix determinant
�Eq. �C1�	 takes now the form
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M̃n�kx,�� � ��̃cn
�kx� − �	��̃IT − �� − ��R

�n���n�	2.

�C8�

The polariton frequencies resulting from this determinant are
complex numbers. For kx=kn

res one obtains

�̃�n�kn
res� = �IT − i

�IT + �̂cn

�

2
�

1

2
�4��Rres

�n� �2 − ��IT − �̂cn

� �2,

�C9�

where �̂cn

� = �̂cn
�kn

res�. It can be observed that the polariton
frequency depends crucially on the sign of the expression
below the square root. If �2�Rres

�n� �2� ��IT− �̂cn

� �2, then
��n�kn

res� exhibit the frequency splitting already encountered:
it is the SCR. If the above-mentioned inequality is not ful-
filled, the mode splitting disappears and the system is in the
weak-coupling regime.

As it has been mentioned, for the interpretation of the
angle-resolved absorption spectra the polariton dispersion re-
lation in the �-� plane is required. Employing Eq. �13� and
restricting to the SCR we can rewrite �for � not to far from
�cn

���	 the matrix determinant �Eq. �C8�	 into the following
form:

M̃n��,�� � ��̃cn
��� − �	��̃IT − �� − ��̄R

�n����	2,

�C10�

where �̃cn
���=�cn

���− i�cn
���. The quantity �cn

���= �̂cn
�kx

=kz,n tan �� /cos2 � is the decay rate of the cn cavity mode
radiating at the angle �. Note that, in general, the cavity
mode decay rate contains the radiative �cn

rad and the absorp-
tive �cn

abs=�cn
−�cn

rad contributions. �cn

rad is connected with fi-
nite transmitivity �Tc� of the coupling mirror. The absorptive
contribution �cn

abs appears due to the absorptive losses in the
passive MC �see Appendix D�.

Solving the equation

M̃n��,�� = 0, �C11�

we get the expression for the angular dependence of the com-
plex mode frequencies �̃�n��� given by Eq. �23�. It is con-
venient to separate the real and imaginary parts of �̃�n���.
They can be written as

��n� ��� =
�IT + �cn

���

2
�

�an
2 + bn

2�1/4

2
cos�%n

2
� ,

�C12�

− ��n� ��� =
�IT + �cn

���

2
$

�an
2 + bn

2�1/4

2
sin�%n

2
� ,

�C13�

where

an � an��� = �̄n
2��� − ��cn

��� − �IT	2 + �2�̄R
�n�	2,

bn � bn��� = − 2�̄n�����cn
��� − �IT	 ,

tan %n = bn/an �0�%n �� .

The SCR is achieved when 
bn /an
�1. In this regime the
influence of the dissipation on ��n� ��� can be neglected in
the first approximation. In other words, the � dependence of
��n� can be approximated by Eq. �C6�.

Performing appropriate expansion in Eq. �C13� one can
check that the polariton relaxation rate ��n����−��n� ���
can be written in the terms of �cn

��� and �IT as

��n��� = C�n
2 ����cn

��� + X�n
2 ����IT, �C14�

where the modified Hopfield coefficients C�n and X�n are

given by Eqs. �C3� and �C4� with �n�kx� replaced by �̄n���
and �R

�n���n� replaced by �̄R
�n����. �In the case of Eq. �C5�

�n�kx� should be replaced by �n���=2�̄R
�n���� / �̄n���.	 It im-

plies that at resonance, �=�n
res, the decay rate of the upper

and lower polariton branches are the same and equal to
��n=�n

����cn

� +�IT� /2, where �cn

� ��cn
��n

res�.

2. Absorption spectra

It is instructive to use the two-oscillator model to further
explore the optical properties of the MC as a function of
different parameters. The application of the input-output for-
malism makes it possible to calculate the absorption of the
MC connected with the nth polariton branches �for details
see Ref. 27�. Employing an approach analogous to that de-
veloped in the above-mentioned paper we find that
kx-resolved absorption spectrum �connected with the nth or-
der polariton branches� can be written in the form

An��� =
4�̂cn

�kx��IT��R
�n���n�	2


M̃n�kx,��
2
. �C15�

In obtaining this equation we have assumed, following Gia-
cobino et al.,27 that �̂cn

abs=0. One can check that including the
absorptive contribution in the equation of motion of the pho-
tonic oscillators induces the following substitution in the nu-
merator of Eq. �C15�:

�IT��R
�n���n�	2 → �IT��R

�n���n�	2 + �̂cn

abs��� − �IT�2 + �IT
2 	 .

�C16�

However, we should remember that in experiments not kx but
� is fixed. Performing appropriate manipulations one can
obtain from Eqs. �13�, �C8�, �C15�, and �C16� an expression
for the angle-resolved absorption spectrum described by Eq.
�25�.

APPENDIX D: MULTIBEAM INTERFERENCE
APPROACH

Let us assume, like in Sec. II B, that the MQW �with
period LMQW and number of the wells NQW� is located be-
tween the coupling mirror �at z=0� and the totally reflecting
back mirror �at z=LMC�. The coupling and back mirrors are
characterized by the amplitude reflection �transmission� co-
efficients rc �tc� and rb �tb�, respectively. The difference be-
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tween the dielectric constant of the substrate material ��s�,
the barrier material ��b�, and the well material ��w� is as-
sumed to be vanishingly small.

For realistic values of the QW parameters the quantity
#QW �see Eq. �A4�	 is very small. Thus, the expressions for
the reflection and transmission coefficients of the sheet
�modeling Q2DEG in QWs	 can be approximated by

r2D � 0, t2D � e−#QW/2. �D1�

Omitting the light reflection by the Q2DEG is consistent
with a traveling-wave approximation discussed in our previ-
ous paper.22 In this limit we can calculate the reflectance and
absorptance of the above-mentioned MQW-MC system em-
ploying a standard multibeam interference analysis �see, e.g.,
Refs. 17 and 41�. In this approach the complex amplitude of
the wave reflected by the system, Ar, is treated as a sum of
the partially reflected components Ar1, Ar2, Ar3 , . . .. Taking
into account Eq. �D1� we get the expression for the reflec-
tivity of the system rMB=Ar /Ai �Ai is the amplitude of the
incident light� as

rMB = rc + tctcrbei2&tot−A�1 + rcrbei2&tot−A

+ �rcrbei2&tot−Atot�2 + ¯	

=
rc + �tc

2 − rc
2�rbei2&tot−A

1 − rcrbei2&tot−A . �D2�

We have defined �i� the half round-trip �total� phase change
&tot=&MC+&MQW, where &MC=cos �K��wLMC and &MQW
=NQW Im #QW /2 and �ii� the half round-trip �total� absorp-
tance 1−e−Atot, where A=AMQW+AMC and AMQW
=NQW Re #QW. AMC determines the single pass absorptance
of the passive MC.

In further discussion we utilize the following relations:
rb=−�Rb, rc=−�Rc, tc= i�Tc, and Tc=1−Rc, valid for dielec-
tric mirrors.42 In the presence of the losses in the mirrors the
following relations are valid Rb=1−Ab and Rc=1−Tc−Ac,
where Ab �Ac� denotes the absorptance of the bottom
�coupled� mirror�. To get simple analytical results we restrict
ourselves to the case when Tc and Atot�=A+ �Ac+Ab� /2	 can
be treated as small quantities. Employing the above-
mentioned simplifying assumptions we can reduce Eq. �D2�
to the form

rMB =

− 1 +
Tc + Ac

2
+ �1 −

Ac

2
− Atot�exp�i2&tot�

1 − �1 −
Tc

2
− Atot�exp�i2&tot�

.

�D3�

The dispersion equation for the polariton modes, resulting
from Eq. �D3� can be written as

�1 −
Tc

2
− Atot�exp�i2&tot� = 1. �D4�

Neglecting the intersubband transitions �AMQW=&MQW=0�
we get from Eq. �D4� the following expressions for the ra-
diative and absorptive components of the cavity decay rates:

�cn

rad��� = Tc�c1
���/4� , �D5�

�cn

abs��� = �2AMC + Ac + Ab��c1
���/4� . �D6�

�The expression for �cn

rad��� presented in Ref. 6 contains mis-
print.	

To proceed further we define the quantity &tot
�n�=&MQW

−&MC
�n� , where &MC

�n� =�n−&MC=���cn
���−�	 /�c1

���. Then
we restrict ourselves to a frequency range where this quantity
is very small.17,42 In this limit the exponential term appearing
in Eqs. �D3� and �D4� can be expanded in the power series
and the dispersion Eq. �D4� reduces to

Tc + 2Atot − i4&tot
�n� = 0. �D7�

The expression for the absorptance of the MQW-MC system
AMB=1− 
rMB
2 simplifies to

An
MB =

8AtotTc

�Tc + 2Atot�2 + �4&tot
�n��2 . �D8�

One can check that the RWA Eq. �D7� �Eq. �D8�	 reduces to
Eq. �C11� �Eq. �24�	.

As it has been mentioned in Sec. I, the results reported in
Ref. 14 have been interpreted employing a simplified semi-
classical approach developed by Zhu et al.17 Referring to this
paper, the authors of Ref. 14 assume that in the SCR the
resonances of the MQW-MC system �and consequently the
absorption peaks� should occur for the �real� frequencies at
which the total round-trip phase shifts are multiple of 2�.
The above condition can be written in the equivalent form as
&tot

�n����=0. It leads �in the RWA� to the following implicit
expression for the frequencies of the nth order polariton
branches at �=�1

res:

n�IT − �

�IT − �
=

�̄Rres

2

�IT
2 + ��IT − ��2 . �D9�

Since in the SCR the inequality �̄Rres

2 ��IT
2 is fulfilled, for

n=1 this formula gives a well-known expression �IT��̄Rres
for the location of the two main absorption peaks. Unfortu-
nately, the above formula does not work correctly when n
�1. For example, taking a realistic value of �IT=0.03 �IT
one finds, in agreement with estimations reported by Dupont
et al.14 �see Fig. 5 in the above paper�, that for n=2 Eq. �D9�
has no solutions as long as �̄Rres

'0.25 �IT. One can check
that this is entirely due to the presence of the “dissipation”
terms �the first two terms� in Eq. �D7�. These terms are ne-
glected in the approach leading to Eq. �D9�. It has a good
justification in the case of the U1 and L1 branches. However,
when the eigenmode frequency is close to �IT �like in the
case of the Ln�1 branches�, the term Atot �more precisely
AMQW� cannot be treared as a very small and consequently
the above-mentioned approximation breaks down. Fortu-
nately, the problem can be overcome when we completely
neglect the dissipation in Eq. �D9�. In the limit �IT=0 �and
�=�1

res� Eq. �D9� becomes equivalent to Eq. �C6�.
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